[bookmark: _GoBack]Security Code Review Criteria
as per Song
Viirs Vegetation Health Code Delivery

Perl code was inspected visually and by grep.
C++ source was scanned with Flawfinder and CPPchecker. Result files have “FF” and “CPPC” suffixes, respectively.

1. High priority

a. Clear-text user credential (username, password)
None observed, by inspection of source and grepping on terms.

b. System calls (via system, fork, spawn)
In the perl scripts, “system” is used twice per script: to carry out cleanup, and to run the VHsuite.exe program, with flags, as per the command line. The allowable arguments for the flags are fairly well constrained, as they are either predefined in the script code or read from the specified pcf file.
The system calls, as opposed to the prep, are “system $command” in each case. So if there is a practical way to usurp the string in “$command”, it could be used to run arbitrary commands as per the command line. On the other hand, someone who can execute the perl scripts can presumably already do so from the command line itself.
Use of system calls in the c++ code is as follows: No forks or spawns, system calls as follows:
In lib_basic.cpp, the system() call is used indirectly in 17 places via the function
61 void executeCommand(char *command)
indirectly in 6 places via the function
548 void mkdir(char *dir)
and indirectly in 2 places via the function
5656 void removeFile(char *filename, bool needRemove)

executeCommand() doesn’t validate what’s in the command string, just passes it on to system(). So for security purposes it can be thought of as a raw system() call.
mkdir() creates a predefined string containing the filename variable, so it’s not quite as freeform.
554 sprintf(cmdstring, "mkdir -p %s",dir);
removeFile() is similar to mkdir in how it’s put together. Not as freeform as “anything goes”, but close.
5660 sprintf(command,"rm %s", filename);

For all three functions, it is the responsibility of the calling code to make sure the argument is safe. Examining the calling source, this is reasonably true for most of them—they are fed by information in the routine and from structured and trusted files, and dynamic data is only a part of the string.
As with the perl scripts, to run these a malefactor would already have to be logged in as the user and so would be able to run system commands as the user anyway. “If the malefactor can run this executable as the user, with malformed strings, you already have bigger problems than that.”
I think this is OK.

c. Unverified user input (SQL injection, buffer overrun)
VHsuite.cpp handles user input for the command line invocation. User input parsing is done via explicit matching and structured pretty well, but it may be possible to abuse the command strings for the “showHelp” flag (partly structured, but the unstructured part is at the end and there’s 512 characters to play with). As before, though, to do so a malefactor would already need to be logged as the user, and so could run code from the command line in any case.
Overall, I think it’s OK. Input is either from trusted files, or when from the user is screened & matched prior to use.

d. Hardcoded addresses, paths, and limits (IP, port, MLS, /,\)
None observed in either the per scripts or source code, by inspection of source and grepping on terms.

2. Moderate priority
a. Unhandled exception and return code
“Old school” approach to return codes, c-style. throw/catch, instead printf for error messages and return codes for success/fail.
Good enough, and doesn’t expose security-sensitive information.

b. Array bounds and buffer overrun
No overt array boundary violations. Many theoretically possible buffer overflow warnings flagged for sprint, strcpy, strlen, etc.
Pretty hard to modify the strings to actually cause overflows (mostly reads from trusted files).
Thesse are worth pointing out to the developer, but probably not worth insisting on mandatory fixes.

c. Unconditional/conditional branching (longjmp, goto/go to, signal/kill)
None observed, by inspection of source and grepping on terms

d. Resource leaks (memory, shared memory segments, descriptors, temporary files/inodes)
None observed, by cppcheck & flawfinder scans and inspection of source.

3. Low priority (optional)

a. Comparison between floating-point and integer variables
None observed, by inspection of source and grepping on terms

b. Synchronization, dead-lock, and race conditions (DB/file locking, mutex, semaphore)
Not applicable. All the code is single threaded and file locking looks OK.

c. Thread-safety (overwriting static and/or singleton variable inadvertently)
Not applicable. All the code is single threaded.

c. User/kernel-mode CPU saturation (spins, loops)
Looks OK. The few indefinite loops are backstopped adequately.

d. Unnecessary pass-by-reference (C/C++ only to avoid inadvertent variable updates)
None observed by inspection of header files. Pass-by-reference mostly used for big persistent structures.

e. Uninitialized automatic variables
N/A

f. Implicit variables (FORTRAN)
N/A

h. Other flaws that break natural/physical laws (date/time, latitude/longitude, temperature, energy, etc)
None observed by inspection.

i. Scanning results that may represent potential bugs.

lib_basic.cpp.CPPC
[lib_basic.cpp:4979]: (error) Undefined behavior: Variable 'filename' is used as parameter and destination in s[n]printf().
VHsuite.cpp.CPPC
[VHsuite.cpp:3605]: (error) Undefined behavior: Variable 'fname' is used as parameter and destination in s[n]printf().
[VHsuite.cpp:3607]: (error) Undefined behavior: Variable 'fname' is used as parameter and destination in s[n]printf().
[VHsuite.cpp:3608]: (error) Undefined behavior: Variable 'fname' is used as parameter and destination in s[n]printf().
[VHsuite.cpp:3609]: (error) Undefined behavior: Variable 'fname' is used as parameter and destination in s[n]printf().
[VHsuite.cpp:3614]: (error) Undefined behavior: Variable 'fname' is used as parameter and destination in s[n]printf().
ViirsGvi.cpp.CPPC
[ViirsGvi.cpp:2118]: (error) printf format string requires 14 parameters but only 13 are given.

The above items should be examined by the developer, to determine if they represent potential bugs.
Similarly, the CPPC and FF files should be forwarded to the developer for reference.

Please package and provide the following for review (on Google Drive):

1. All source codes including scripts
See provided tarball.

2. Build scripts (make, ant, maven, perl, sh, etc)
See provided tarball. Diurnal_model (f90) and Ingester (c) both have Makefiles

3. Compile/link outputs and dependencies (executables/binaries, packages, headers, static libraries, shared objects)
Acquired from Andy Harris.

4. Middleware deployment dependencies (provide references like apache, tomcat, jboss, and jvm/jdk and not runtime binaries)
None known. It’s just f90, C, and libraries.

5. Runtime architecture and platform (32/64-bit, Windows, UNIX-variant, Linux-variant, etc)
RHEL 64-bit.
